

PRÉFET DE LA RÉGION **AUVERGNE-**RHÔNE-ALPES

Bilan 2019 de l'Observatoire des Maladies et des Affaiblissements de l'Abeille Auvergne-Rhône-Alpes

Développement de l'Apiculture en Auvergne-Rhône-Alpes

Objectifs de l'OMAA

Objectifs: faire l'inventaire et l'analyse de la dynamique spatio-temporelle des mortalités et des affaiblissements des colonies en France dans le but de détecter les dégradations de l'état de santé du cheptel apicole français et d'alerter les gestionnaires du risque.

Répondre aux attentes des pouvoirs publics = alerte précoce en cas d'augmentation anormale des évènements d'affaiblissements et/ou de mortalités

Répondre aux attentes des apiculteurs = compréhension des évènements d'affaiblissements et/ou de mortalités

PRÉFET DE LA RÉGION AUVERGNE-RHÔNE-ALPES

Fonctionnement de l'observatoire

en Auvergne-Rhône-Alpes

Fonctionnement du guichet unique

VOUS CONSTATEZ DES MORTALITÉS OU DES AFFAIBLISSEMENTS DE COLONIES D'ABEILLES

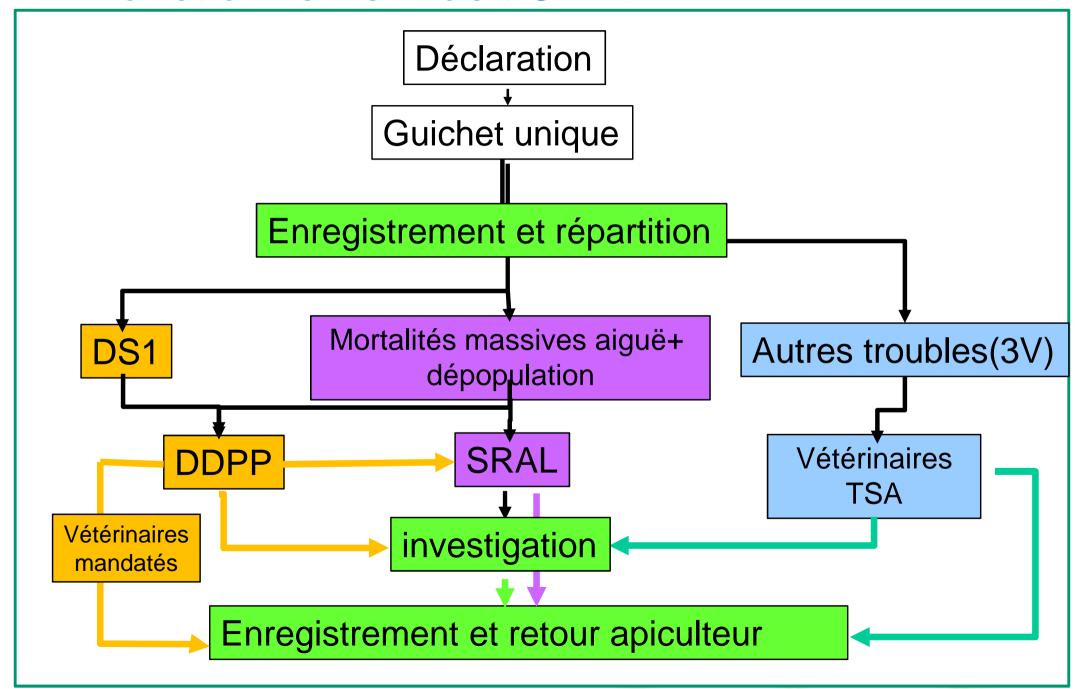
DÉCLAREZ LES RAPIDEMENT à l'OMAA Auvergne-Rhône-Alpes (Observatoire des Mortalités et des Affaiblissements de l'Abeille mellifère)

Pour vous aider à comprendre ce qui impacte vos colonies

Pour participer collectivement à la meilleure connaissance des troubles de santé de l'abeille mellifère

Pour plus d'information : http://plateformelesa.fr

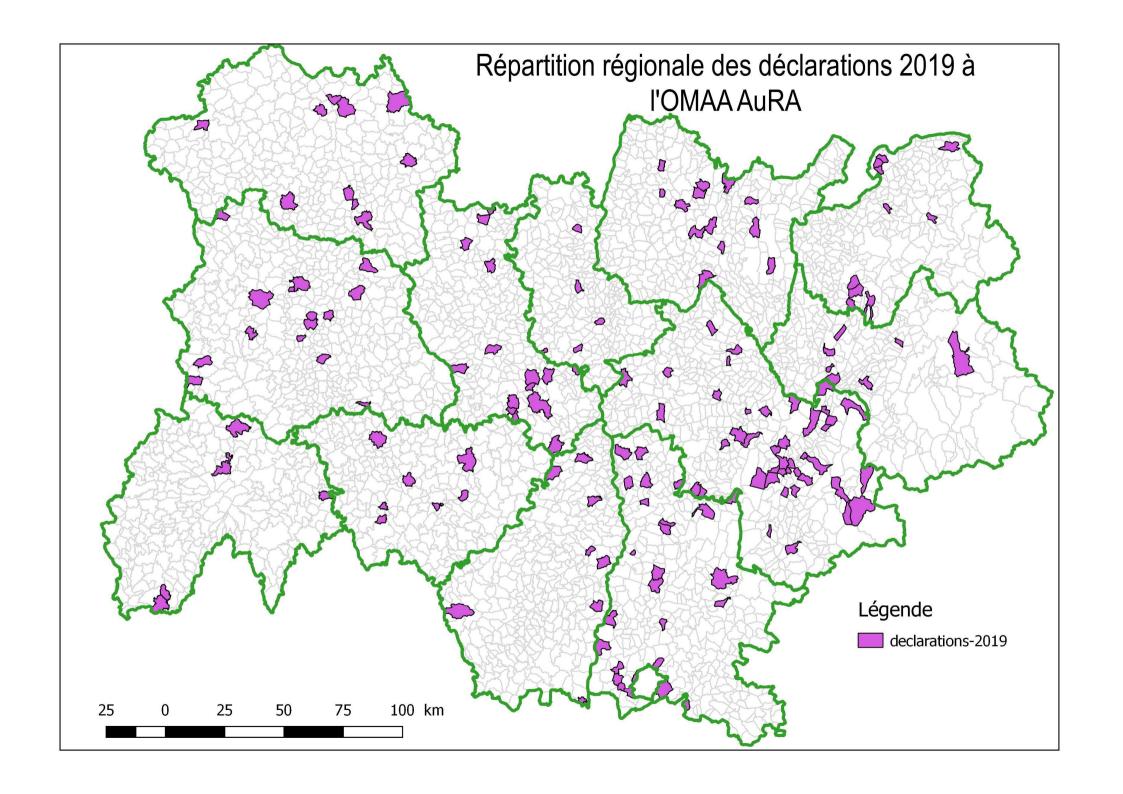
√ 7/7 j 8H-21h


- Plateforme de réception et de répartition des appels
- garde téléphonique assurée par 16 vétérinaires titulaires du DIE
- ✓ Un seul numéro (04-13-33-08-08) pour
 - tous les évènements de santé
 - toute la région
- √ 45 vétérinaires investigateurs et 100 TSA
- √ 12 DD(CS)PP
- ✓ Coordination DRAAF/SRAL

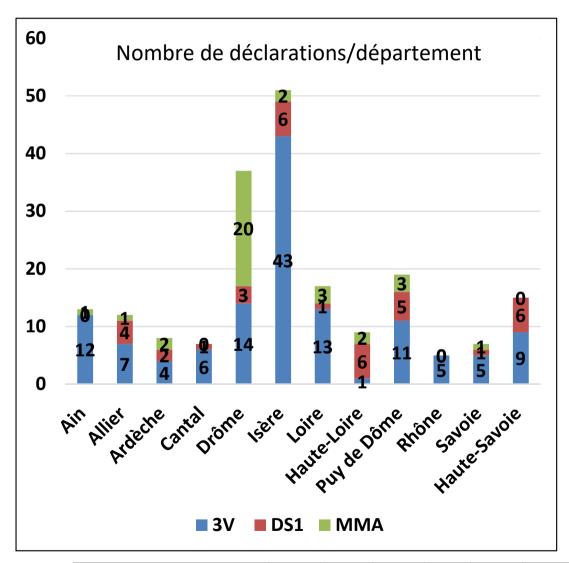
Fonctionnement de l'OMAA

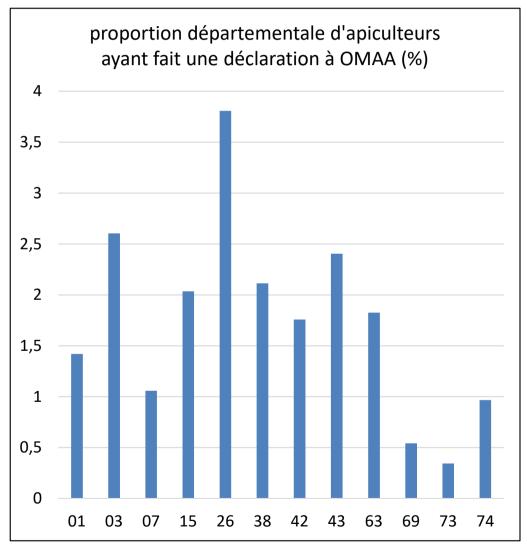
PRÉFET DE LA RÉGION AUVERGNE-RHÔNE-ALPES

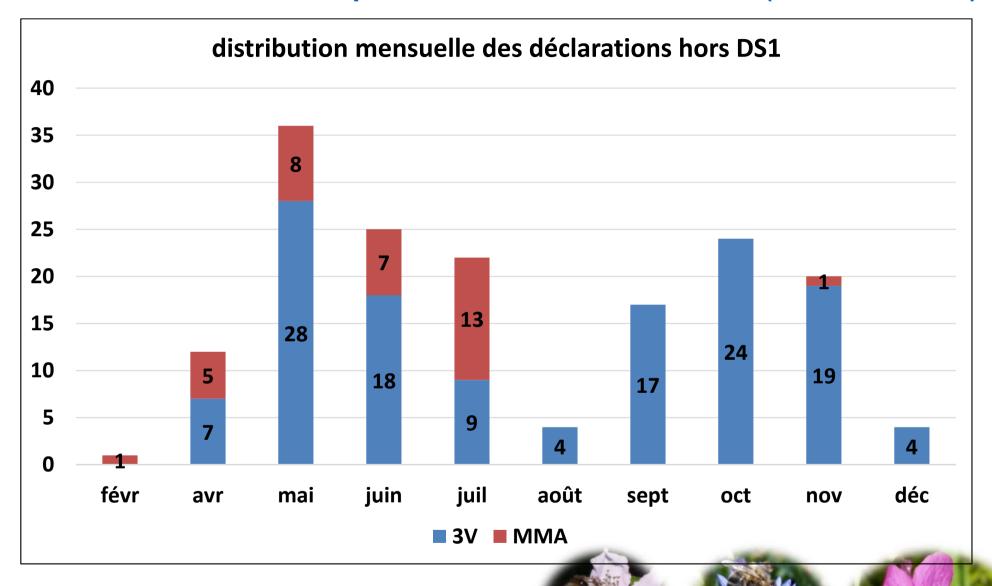
Bilan chiffré 2019

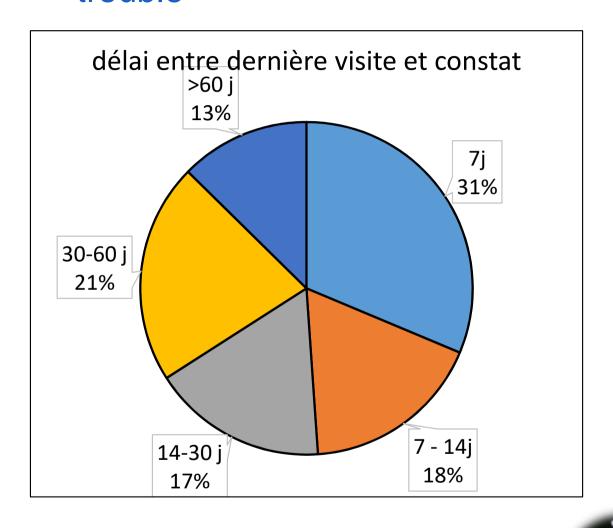

Déclarations et investigations

Orientation initiale	Nombre	Nombre de visites	% de déclarations suivies de visites
3V	130	72	55
DS1	35	35	100
MMA	35	27	77
Total	200	134	67


Motifs d'absence de visite de ruchers OMAA


- Déclarations trop tardives/constat des troubles (16)
- Refus de visite de l'apiculteur (10)
- Résolution téléphonique (33)
- Sans objet en cas de rucher nettoyé et reconditionné sans attendre la visite (2)
- Visites réalisée hors cadre OMAA (PSE) 5

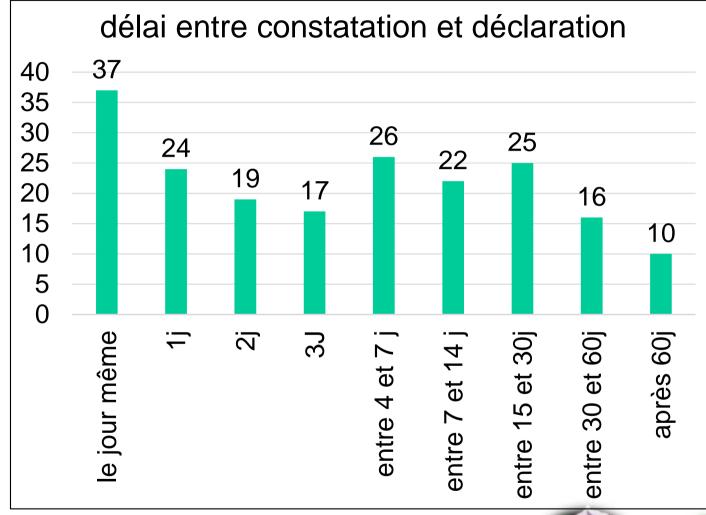

Répartition départementale des déclarations 2019 selon les orientations



départements	01	03	07	15	26	38	42	43	63	69	73	74	Total général
Nombre de déclaration	13	12	8	7	37	51	17	10	18	5	7	15	200

Déclarations : Répartition Mensuelle (hors DS1)

Délai entre la dernière visite du rucher et constat du trouble

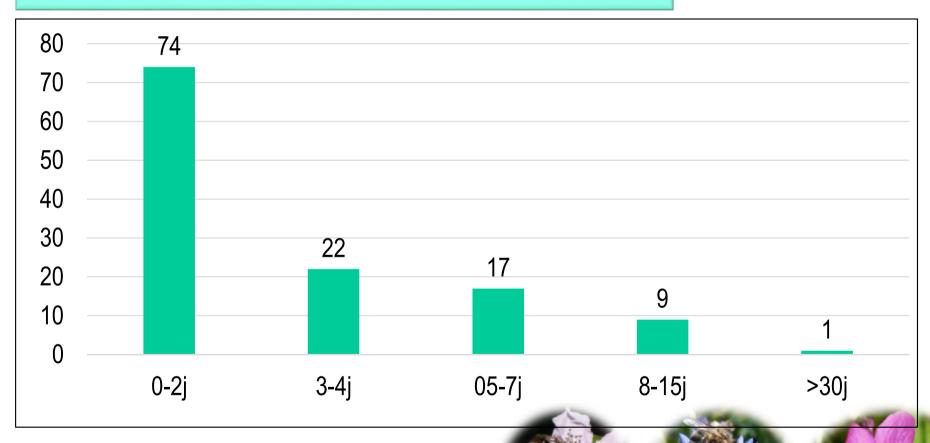


49% des constats sont faits dans les 2 semaines suivant la dernière visite du rucher

Délai entre constat du trouble et déclaration (hors DS1)

Des déclarations parfois très, très tardives

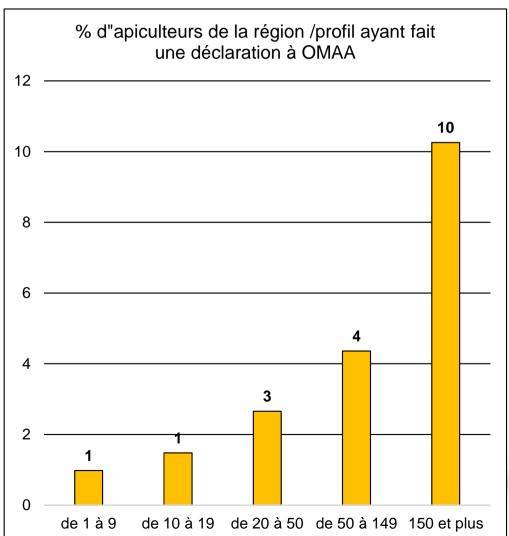
Le recensement total des DS1 a été réalisé en fin de campagne auprès des DD(CS)PP. Ils ne sont pas comptabilisés dans ce graphique

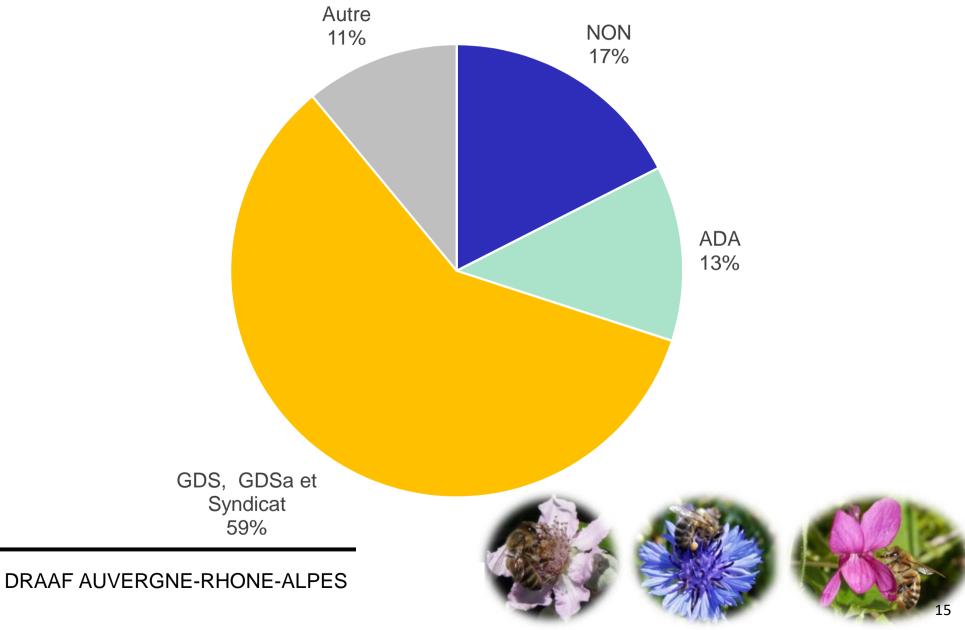


Délai d'investigation

35 % des investigations sont réalisées dans les 24 h 60% dans les 48h

78 % des investigations sont réalisées dans les 4j


92% dans les 7 J


Profil des apiculteurs déclarants en fonction du nombre de colonies détenues

- 59 % d'apiculteurs de moins de 20 colonies
- Professionnels bien représentés (Rôle prépondérant de l'ADA AuRA)

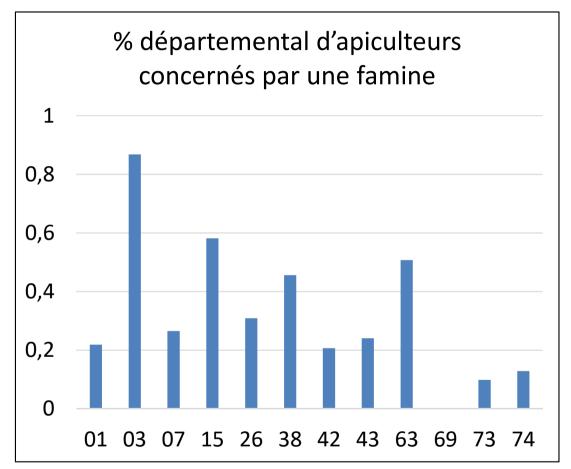
Apiculteurs déclarants et appartenance à un organisme sanitaire

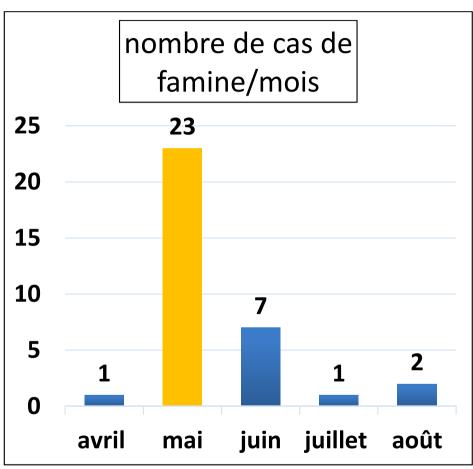
PRÉFET DE LA RÉGION AUVERGNE-RHÔNE-ALPES

Bilan des stress identifiés dans les cas de 3^{ème} voie

Bilan 2019 3ème voie

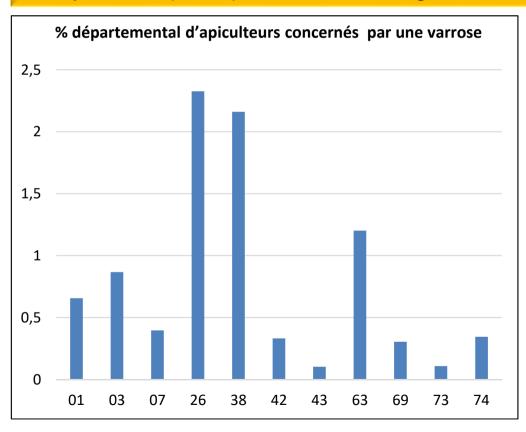
Principaux stress diagnostiqués:

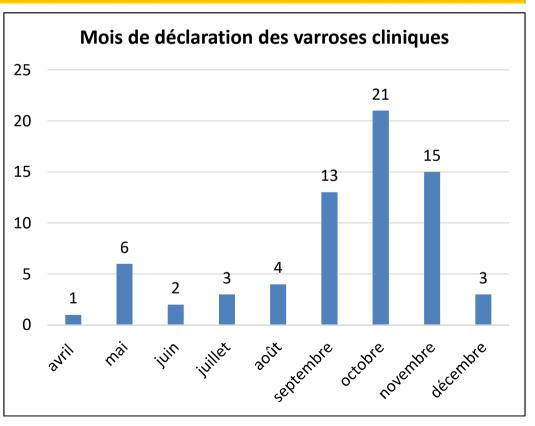

- Famine
- varroa



famines

S'expliquent par le contexte climatique


Dpt du rucher	01	03	07	15	26	38	42	43	63	69	73	74	Total général
nbre de famine	2	4	2	2	3	11	2	1	5	0	2	2	36


Varroa

67 cas de varrose enregistrés dont 39 visités 52> 1^{er} septembre

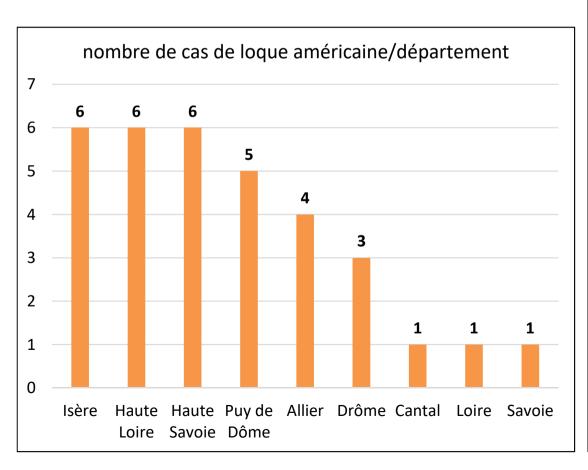
34 liées au manque d'efficacité du traitement mis en place en fin d'été (période 01/09 au 15 décembre)

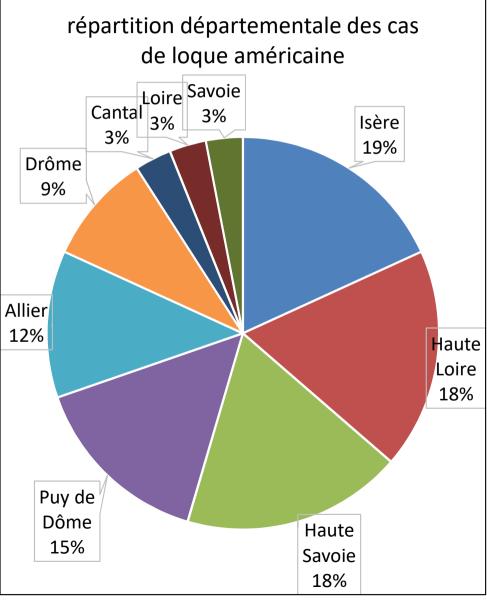
analyse des pratiques de lutte / signalements pharmacovigilance

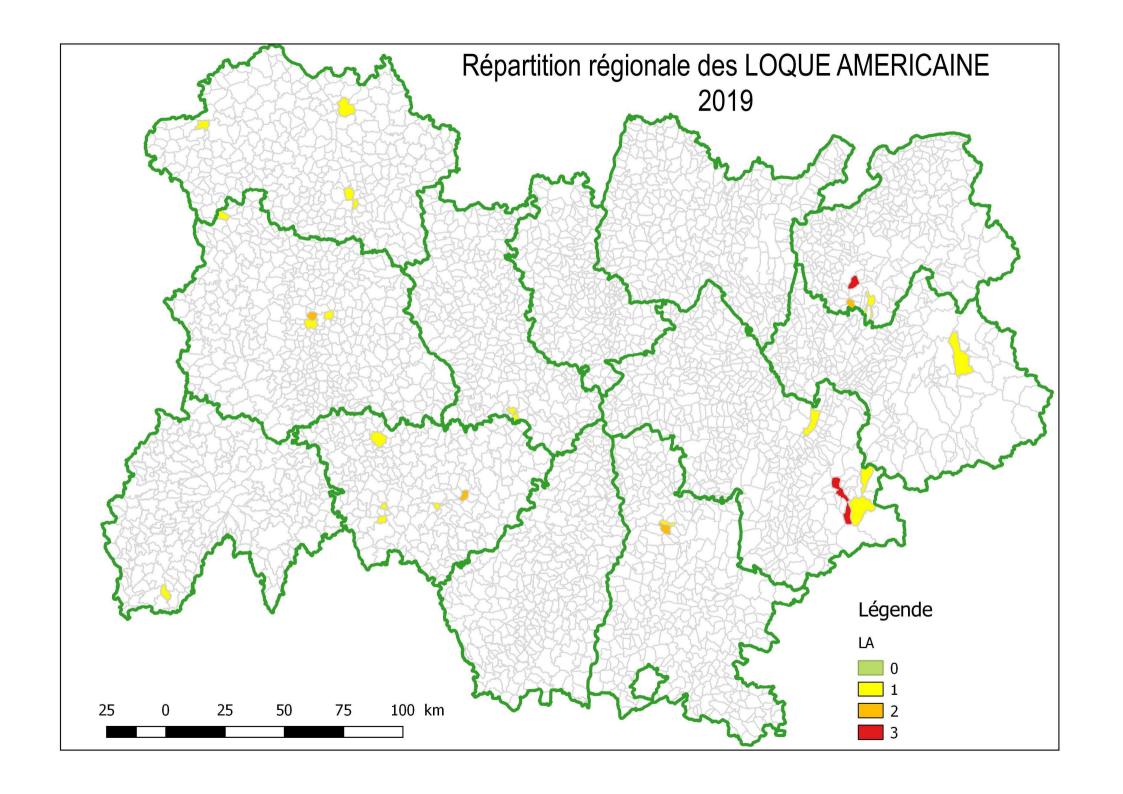
Dpt du rucher	01	03	07	26	38	42	43	63	69	73	74	Total général
nbre de varrose	6	4	3	8	21	8	1	5	3	1	7	67

PRÉFET DE LA RÉGION AUVERGNE-RHÔNE-ALPES

Bilan DS1




Déclaration DS1 /loque américaine


Recensement tardif de tous les cas identifiés en 2019

35 déclarations DS1

- 33 confirmées loque américaine
- 2 cas 3éme voie: famine, 1 indéterminé



PRÉFET DE LA RÉGION AUVERGNE-RHÔNE-ALPES

Bilan MMA 2019

Bilan des cas orientés Mortalités Massives Aiguës

35 déclarations MMA

• Dont 15 rattachées au principe des Mortalités Massives Aiguës Groupées de l'Instruction technique DGAL/SASPP/2018-444 du12/06/2018:

mortalités massives aiguës survenant, dans plusieurs ruchers, dans une période et une zone géographique données, faisant suspecter une origine commune.

8 cas non visités:

4 refus de visite, 2 déclarées trop tard, 1 famine, 1 rucher reconditionné)

27 visites dont 11 concernant les cas des MMA groupées

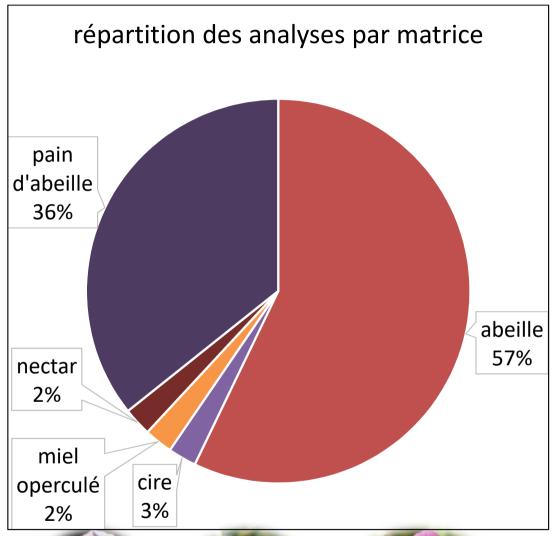
• 18 suivies d'analyses dont 11 concernant les MMA groupées:

12 avec présence de résidus:

3 intoxications probables (glyphosate en février, phosmet en mars, chlorpyriphos en juillet)

6 sans résidu:1 cas de famine, 4 canicule, 1 cas nosema

• **9 requalifiées 3V:** 5 cas de famine, 1 varrose, 2 CBPV, 1 indéterminé

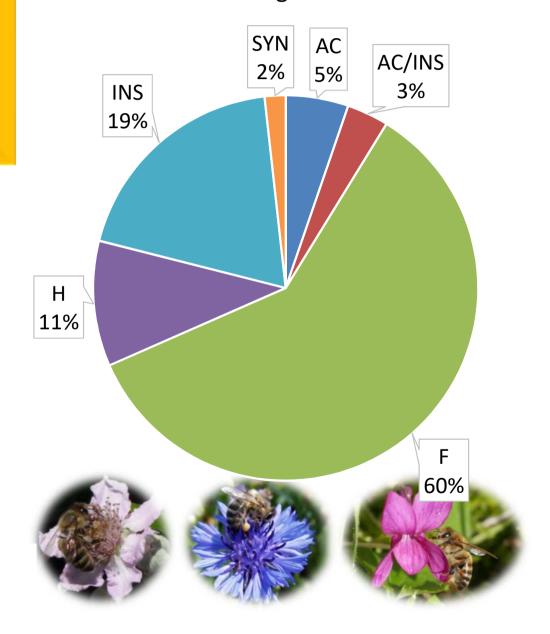


MMA /Bilan analyses

- 42 analyses toxicologiques concernant
 19 déclarations :18 MMA + 1cas3V
- 6 cas sans résidu
- 27 molécules identifiées

matrice	Nombre d'analyses	nombre maximum de molécules identifiées/matrice
abeille	24	3
cire	1	8
miel operculé	1	0
nectar	1	0
pain d'abeille	15	6
Total général	42	8

MMA /Bilan analyses


27 molécules

- •48% d'insecticides/acaricides
- •33% de fongicides

60% des molécules détectées sont des fongicides

Étiquettes de lignes	Nombre de fonction
acaricide	3
acaricide / insecticide	2
fongicide	9
herbicide	4
insecticide	8
synergisant	1
Total général	27

répartition des détections de molécules par usage

	nombre de	détection de	chaqu	e m	nolécule pa	r mat	rice	
molécule	fonction	famille	abeille	cire	miel operculé	nectar	pain d'abeille	Total général
Acétamipride	INS	nicotinoide	1					1
ametoctradin	F	Triazolopyrimidine					7	7
boscalid	F	carboxine	8					8
captan	F	Phthalimide	1				1	2
chlorpyriphos	INS	organo-phosphoré		1			1	2
coumaphos	AC/INS	thiophosphate		1				1
difénoconazole	F	triazole					3	3
dimethomorph	F	morpholine					4	4
fenpyroximate	AC/INS	Pyrazolium		1				1
fluazifop-P-butyl	Н	aryloxyacide	1				1	2
fludioxonil	F	phénylpyrrole					1	1
glyphosate	Н	Phosphonoglycine					2	2
héxythiazox	AC	Carboxamide		1				1
imidacloprid	INS	Neonicotinoid	1					1
phosmet	INS	organo-phosphoré					1	1
pipéronyl- butoxyde	SYN	Cyclic aromatic		1				1
propargite	AC	Sulphite ester		1				1
propyzamide	Н	Benzamide					1	1
Pyriproxyfène	INS	des dérivés de pyridines 5 « inhibiteurs de croissance »°	1					1
tau fluvalinate (mg/Kg)	INS	pyréthrinoide	1	1			1	3
tebuconazole	F	triazole	1				4	5
tébufenpyrad	AC	Pyrazolium		1				1
tétraconazole	F	Triazole					3	3
Thiaclopride	INS	nicotinoide	1					1
thiametoxam	INS	nicotinoide	1					1
trifloxystrobin	F	strobilurine					1	1
trifluralin	Н	Dinitroaniline					1	1
	acaricide	Н	herbicide	'				
·	acaricide / insecticide		insecticio				Molécule inte	rdite
F	fongicide	S	synergisa	nt				

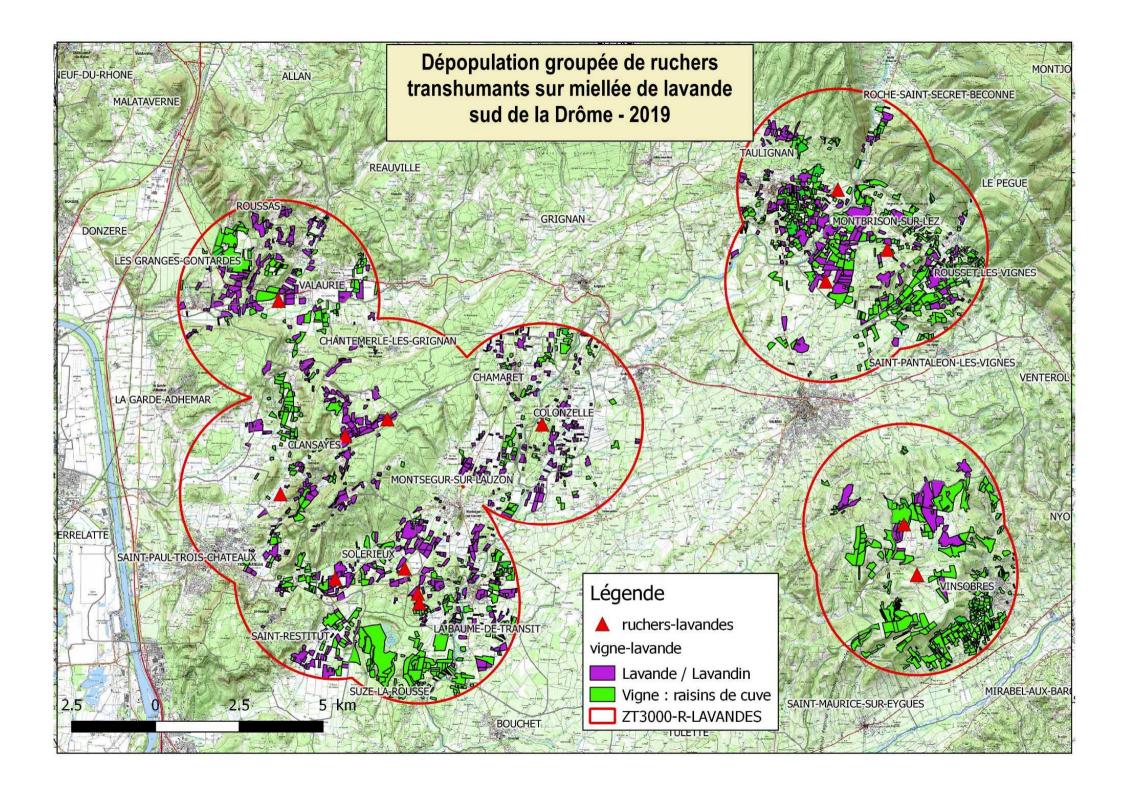
Les 4 molécules les plus fréquemment détectées sont 4 fongicides:

- boscalid
- Ametoctradin
- tebuconazole
- diméthomorph

7 molécules interdites

Dépopulations groupées en sud Drôme

15 déclarations


- ruchers entre le 28 juin et le 09 juillet 15 ruchers
- ➤ 10 apiculteurs de 1 à 3 ruchers transhumants
- > miellée de lavande dans le sud de la Drôme
- ➤ dépopulation

Nature des troubles

➤ Dépopulation, perte de butineuses

Chronologie

- ➤ Installation des ruchers en moyenne vers le 16 juin, entre le 08 juin e et le 22 juin
- constats des troubles majoritairement entre 26 et 27 juin et pour les plus tardifs les 3 premiers jours de juillet.

Hypothèses et méthodologie

Hypothèses

- Pollution phytosanitaire
- Effets non intentionnels de produits phytosanitaires en période de forte chaleur.
- Origine sanitaire
- Effet du climat sur les colonies.
- Effet du climat sur la production de nectar par les lavandes et lavandins.

Méthodologie

- ➤ visite par un vétérinaire mandaté par la DDPP de la Drôme+SRAL +ADA-Aura ponctuellement
- ➤ analyses multi-résidus par 2 laboratoires (CNRS/Primoris) abeilles et PA
- ➤ analyses pathologiques (multi-virus+nosema) par l'ANSES Sophia-Antipolis
- ➤ Analyse des données d'élevage
- > consultation pour la partie végétale du CRIEPPAM, l'ITEPMAIL, la chambre d'agriculture, université Jean-Monnet de St Etienne
- ➤ des observatoires de miellées de Lavandes : http://w3.avignon.inra.fr/lavandes/biosp/observatoires.html.

Résultats toxicologiques

		nombre de détections par molécule et par matrice									
Étiquettes lignes	usage	abeilles	abeilles /lavande	miel	nectar	pain d'abeille	Total général				
ametoctradin	F					5	5				
boscalid	F	6	1				7				
chlorpyriphos	1					1	1				
difénoconazole	F					3	3				
diméthomorphe	F					4	4				
imidaclopride	1	1					1				
tebuconazole	F					3	3				
tétraconazole	F					3	3				
thiaméthoxam	1	1					1				
trifluraline	Н					1	1				
nbre de molécules/matrice		3	1	0	0	7	10				
F= fongicide	I=Insecticide				H=herbicide						
usage phytosanitaire i	nterdit										

pas de molécules communes à tous les ruchers concernés par le phénomène de dépopulation, ce qui permet d'éliminer l'hypothèse d'une dépopulation causée par une seule et même « intoxication ».

Analyses pathologiques

résultats des analyses pathologiques

	non détecté	détecté	infection déclarée	Total général
Virus ABPV	1	7	2	10
Virus BQCV		10		10
Virus CBPV	4	4	2	10
Virus DWV-A	9	1		10
Virus DWV-B		6	4	10
Virus SBV		9	1	10
Nosema ceranae	2	7	sans objet	9

Les analyses ont mis en évidence plusieurs agents pathogènes (virus, N. ceranae et Varroa destructor), fréquemment retrouvés dans les colonies d'abeilles.

La présence de ces agents, pourrait être source d'affaiblissement dans le cadre d'une co-exposition, mais ne présentent, a priori, pas de caractère exceptionnel permettant de valider l'hypothèse d'une origine purement pathologique à la problématique de dépopulation de ruchers.

Stress climatiques

Sur les colonies:

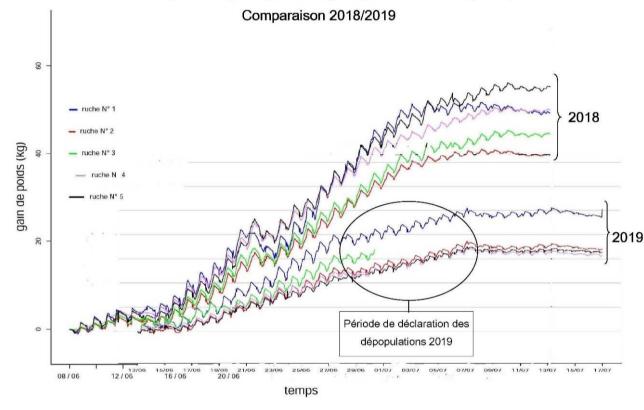
Contexte climatique défavorable aux colonies

Printemps: famines, nourrissements, carences

Été: canicule

Sur les lavandes:

- ➤ Printemps: gelées tardives au mois de mai = dégâts sur les jeunes tiges induisant des différences de maturités des épis.
- ➤Été: forte canicule fin juin = accélération de la floraison et blocage du développement des calices immatures.
- ➤ diminution de la production du nectar



C'est très bien mais du coup très développé par rapport aux autres sections.

conclusion

- Le stress agro-climatique est le seul facteur commun à tous les cas de dépopulation sur miellée de lavande = facteur explicatif principal du phénomène de dépopulation
- Les agents pathogènes, ou les résidus de substances actives ne sont pas homogènes et ne peuvent être retenues comme facteurs explicatifs mais participent à l'aggravation des cas individuels.

- . - - valaurie (courbe de gain de poids, corrigée du poids des hausses rajoutées)

